
Robust Occupancy Computation Based on WiFi
Connectivity Events

1st Rithwik Kerur
University of California, Irvine

rkerur@uci.edu

2nd Yiming Lin
University of California, Irvine

yiminl18@uci.edu

Abstract—Occupancy is essential for energy saving and space
planning in buildings. Current approaches rely on various sensor
hardware, which is intrusive and probably expensive. This work
proposed a robust, almost zero-cost occupancy computation
approach using WiFi connectivity logs. The ubiquity of WiFi con-
nectivity data enables our occupancy solution to be used passively
and in all types of buildings with WiFi infrastructure. Estimating
an accurate occupancy count from the WiFi connectivity data
is challenging, and the streaming nature of connectivity logs
requires the algorithms to be efficient enough to make (near)
real-time computations. We proposed a series of approaches to
efficiently and effectively compute occupancy at a given location
inside a building in the given time range. The proposed occupancy
strategy has been implemented, deployed, and is running in more
than 30 buildings in 2 different universities, for nearly 3 years.

Index Terms—Database, Data Cleaning

I. INTRODUCTION

Occupancy, i.e., the number of people in a certain location
at a given time, is essential for many applications, such as
building energy control [3] and space planning [8]. For exam-
ple, Agarwal, et al. [2] observed that the heating, ventilating,
and air-conditioning (HVAC) energy consumption was reduced
between 10% to 15% based on the occupancy detection in
offices. Leephakpreeda, et al. [3] proposed an occupancy-based
lighting control, and showed that the energy consumption of
the system can be reduced between 35% to 75%. Additionally
occupancy is also a key mitigation strategy for COVID-19 [9]
as users could use occupancy-based applications to be aware
of the people density inside buildings to reduce the chance
of exposure. The strategies used to compute occupancy were
explored in the literature, and they rely on various types of
hardware to compute occupancy, such as Bluetooth, motion
sensors, RFID tags [6], infrared, and video cameras [7]. All of
these technologies require new hardware to be installed in the
building which is expensive and intrusive. Furthermore, they
have algorithmic limitations to deal with dynamic situations
such as occlusions and signal attenuation interference.

This paper explores WiFi connectivity events data for
a zero-cost, efficient and robust occupancy solution. WiFi
connectivity data consists of sporadic connections between
devices and nearby WiFi access points (APs), each of which
may cover a relatively large area within a building, as shown
in Figure 1. Figure 2.a is an example of the WiFi connectivity
events table where each event records the information of the
mac address of the device, the connection timestamp, and the

Fig. 1. Access Point Coverage

identification of the connected WiFi AP. WiFi connectivity data
is attractive and crucial for indoor sensing for several reasons.
First, WiFi infrastructures are ubiquitous in many modern
buildings, and using connectivity logs does not incur any
additional hardware costs. Second, occupancy based on WiFi
connectivity events can be performed passively without the
need to require users to actively participate in the computation
process, such as installing software on their phones. Finally,
the ubiquity of WiFi connectivity events allows us to use the
occupancy system in all types of the buildings with WiFi
equipped, such as supermarkets, offices and libraries.

Our recent work with LOCATER [1] studies the problem
of semantic localization based on WiFi connectivity events
using data cleaning technologies by assigning the location
of a person to a semantic location inside the building, such
as floor/region/room. Although LOCATER bridges the gap
between WiFi connectivity data and the locations of people
inside the building, knowing the location of each individual
device is not enough to generate an accurate occupancy as
there are several challenges to estimating the occupancy based
on WiFi connectivity data. First of all, one person often
has multiple devices, such as a phone, laptop, and iPad, so
simply counting the number of appearances of devices in
the WiFi connectivity data would lead to over-counting for
actual occupancy. Moreover, the WiFi connectivity data is
generated streamingly, that is, it is generated at a fast speed
and large volume, which requires the designed algorithm to
remove multiple devices belonging to the same person in
near real-time. Second, not all connectivity logs are generated
by people, and could instead be generated by static devices,
such as a printer, or computers in a lab/office. Finally, many

Fig. 2. WiFi Connectivity Table and Presence Table

passer-by devices that connected to some WiFi AP but left
the corresponding region immediately should not be counted
in the occupancy of the region of interest. Detecting passer-
by devices from WiFi connectivity data is also an important
factor to ensure an accurate occupancy estimation.

In the remainder of the paper, we start with the architecture
of the occupancy system in Section II, followed by the
detailed algorithms to resolve the above three challenges in
Section III. We discuss the deployment of the occupancy
system in Section IV and Section V concludes the paper.

II. ARCHITECTURE

A. Occupancy Architecture

In this section, we describe the architecture of occupancy
computation as well as the data flow, as shown in Figure 3.
The system first takes raw WiFi connectivity events as the
input. Each event log (i.e., tuple in the table) records the
WiFi connectivity event when a device with mac address maci
connected to a WiFi Access Point (WiFi AP) wapi at time
ti. As an instance in Figure 2.a, the first tuple in the table
represents that a device with a mac address starting with 9867
connected to the WiFi AP 3142-clwa-2099 at time 2019-04-
26 15:03:02. To ask for the occupancy in a location in the
given time range inside a building, one can issue a point query
Q = (st, et, loc), where st, et represent the start and end time
stamps, and loc corresponds to the location of interest. 1 The
output of the occupancy system will be an occupancy count,
i.e., number of people, in location loc in the given time interval
(st, et).

Before the occupancy can be accurately computed, we
first use the LOCATER [1] to compute the location of each
individual device from the raw WiFi connectivity events.
The goal of LOCATER is to locate a device in a building
to different levels of granularity of semantic location, such
as room/region/floor, by cleaning the raw WiFi connectivity
events. Given the raw Wifi connectivity events, LOCATER
formulates the localization problem into several data cleaning
problems. To predict the location of a device at a given
time instance, LOCATER will first predict its coarse location
(coarse localization), i.e., the region (the area covered by its

1Note that a window query of occupancy such as computing occupancy
every k minutes in the given location could be easily returned by calling
multiple point query.

Fig. 3. Occupancy Architecture.

connected WiFi AP), and then disambiguate the rooms inside
this region to give a prediction of the room location of this user
(fine localization). Our evaluation indicates that LOCATER
can answer this query effectively, taking around half a second
on average, while achieving nearly 87% accuracy. In general,
LOCATER is designed to be flexible enough to select the ad-
equate level of localization needed for the application at hand
- paying the additional overhead of fine-grained localization
only if needed.

With LOCATER, let us assume that the occupancy system
has a Presence relation as shown in Figure 2.b. The table
stores information about the identifier of a device (i.e., mac
address), its location (region and room), and the interval
of time it was in the room (startTime, endTime). Note that
materializing the Presence table fully would be prohibitively
expensive (20 milliseconds per missing region location, and
400 milliseconds per missing room location), and we only ma-
terialize the missing locations related to the given occupancy
query at query time.

With the Presence table on hand, an occupancy query
Q = (st, et, loc) in our system is interested in the fine-
granularity, i.e., room location, and course-granularity, i.e.,
region location. (loc ∈ {roomi, regioni}) Such a query asking
for the occupancy in the time interval (st, et) at location loc
on the Presence table can then be easily expressed as a
SQL query, such as select distinct count(macAddress) where
startTime = st and endTime = et and region = loc. 2 However,
the answer to such a query is observed to be inaccurate by
comparing with the ground-truth occupancy number, since two
devices could belong to the same user (duplicate devices),
devices could be static devices such as printers and thus not a
real person (static devices) and the connectivity logs could be
from a passer-by instead of a person in the queried location
(passer-by device). All of the above challenges could affect
the accuracy of occupancy results, and we detail the solution
for resolving each of them in the next section.

III. OCCUPANCY ALGORITHM

A. Duplicate Device Detection

One person often carries multiple devices, and thus counting
each connection for such devices would over-count the occu-
pancy. The task of duplicate device detection is to determine

2If there does not exist a start time stamp (or end timestamp) in the Presence
table that exactly match (st, et), we use the closest timestamps.

Fig. 4. The Percentage of Connectivity Events from the Most Connected
Devices.

a set of devices that belong to the same person and remove
the duplicates when counting occupancy. The intuition behind
detecting duplicates is that two devices belonging to the same
person should share a higher similarity in terms of their
trajectories when compared with other device pairs that belong
to different users. We start with considering the duplicate
device detection problem in the static presence table, and then
we extend it to the streaming presence data as is often the
case in practice.

Consider a static WiFi presence table in Figure 2.b and
the duplicate detection problem. Let Sim(i, j, st, et) be the
similarity of trajectories between devices di and dj during
the time interval (st, et), where the trajectory of device di is
a set of consecutive tuples of device di in the time interval
(st, et) in the Presence table. Sim(i, j, st, et) = CD(i,j,st,et)

et−st ,
where CD(i, j, st, et) is the total length of the duration time
when devices di and dj are in the same region during time
range (st, et). 3 We then define a similarity graph based
on the devices and similarity metrics as defined above. In
particular, let G(V,E, st, et) be the similarity graph, where
the set of nodes V are the set of devices appearing in the
presence table in time range (st, et), and the edge set E
represents the similarities between each pair of devices, i.e.,
V = {di|i = 1, 2, ..., n}, E = {eij |di ∈ V, dj ∈ V, i ̸= j}. We
assign a weight wij for each edge eij as their similarity value
Sim(i, j, st, et) representing the similarity between devices di
and dj during time range (st, et). Any clustering algorithm can
be applied to this graph to do clustering with a constraint that
the number of devices in any cluster can be no larger than k.
In the resulting clusters, the devices in one cluster naturally
represent the devices belonging to the same user since they
share the highest similarities with each other. Such a constraint
is developed from context knowledge since a single person
would not have more than k devices. In our implementation,
we set k as 5, which turns out to be effective enough to enable
accurate duplicate device detection.

3We choose region since the region-level localization by LOCATER is
much cheaper than the room-level localization, and thus enables efficient
computation of similarity.

Learning the similarities between devices in a relatively long
time range (st, et) in the static data is often accurate enough to
resolve the duplicate device challenge for devices appearing
frequently in such a time interval. However, since the WiFi
connectivity events and presence data flow into the system in
a streaming way at a fast speed and with a large volume,
there is a need to dynamically maintain a more accurate
similarity graph for removing devices belonging to the same
user effectively. Processing the streaming presence table for
graph updating is challenging since the number of devices
could be huge, (over a period of one month, there are roughly
20,000 unique devices) and we are not allowed to store all
historical data in the disk (over a period of one month, and
30 buildings, 5.04 GB of data is generated, and the volume of
data is continuously growing).

To resolve the duplicate devices over the streaming presence
table, we first introduce one optimization to reduce the number
of nodes in the similarity graph, followed by a strategy to
incrementally update the graph periodically to support fast-
search of duplicate devices in occupancy computation.

First, we classified the devices into frequent devices and
infrequent devices. Intuitively, frequent devices generate a
significantly higher number of connectivity events compared
to infrequent devices. Figure 4 describes the percentage of the
connectivity events generated by the most frequent devices. As
we can see, roughly 20% devices contribute more than 80%
connectivity events. In our implementation, we regard the top
20% frequently connected devices as the frequent devices.

To incorporate the above observation in the graph, instead
of storing the information of all devices, we reduce the set
of nodes to only store the similarities for frequent devices.
To bootstrap the duplicate detection algorithms, we start with
building a static similarity graph G(V,E, st0, et0) using the
Presence table in the time range (st0, et0), then we update
such a graph G periodically using the new presence data as
follows. In general, consider a graph G

′
we have already

computed and a new graph ∆G built on the new presence data.
We update the graph G

′
in the Algorithm 1. Let G = (V,E)

be the updated graph by combining the information from G
′

and ∆G, where the set of nodes in graph G is the union
set of the nodes in G

′
and ∆G (Ln.1). This step enables

the insertion of the new frequent devices discovered in graph
∆G to the current graph G

′
. For each edge eij ∈ E, we

update its weight wij (i.e., the similarity between devices di
and dj) as the summation of wij and ∆wij (Ln.2-3). The
clustering algorithm would also periodically be applied to
the latest similarity graph to maintain the latest clusters. To
use the maintained similarity graph and clusters to remove
duplicate devices, given two devices di and dj , we check if
the corresponding nodes are in the same cluster or not. Note
that in the graph we maintained, we discard the information
of infrequent users to save more space and enable efficient
graph updating. When a connectivity event is logged from an
infrequent device, i.e., such a device would not be found in
the graph, we just count it once. Although the occupancy com-
putation for infrequent devices might be over-counting since

Algorithm 1: Similarity Graph Update Algorithm

Input: G
′
= (V

′
, E

′
),∆G = (∆V,∆E)

1 Initialize graph G = (V,E), V = V
′
∪∆V , E = E

′

2 for ∆eij ∈ ∆E do
3 wij = wij +∆wij

4 return G

we do not remove any duplicates, the impact of occupancy
number for the overall occupancy would be small in practice,
since the frequent devices generate most of the connectivity
events.

Note that when the number of WiFi connectivity events that
are used to compute pair-wise similarities between devices
is small, e.g, at the beginning stage of the algorithm, the
approach could have a chance to throw out false positives,
since two devices belonging to different users might have
similar trajectories during a relatively short interval in certain
locations, e.g. people who use the university shuttle service,
or have the same office times. However, when the algorithm
uses more historical data to update the similarities, such false
positives should quickly go down since it is unlikely that
two devices belonging to different users have highly similar
trajectories over a relatively long time and in all the locations
they visited.

B. Passer-by Devices

When a person carrying WiFi-equipped devices passes by
a region r covered by some WiFi AP without staying in the
region r, such devices are called passer-by devices, and they
should not be counted into occupancy of the region r. As an
example, students walking by a building without entering it are
false positives for occupancy estimation of the building and
sub-regions inside that building. Given an occupancy query
Q = (st, et, loc) that asks for the occupancy of the location
loc during time range (st, et), such passer-by devices are
observed to only generate the connectivity events in a fairly
short time interval and in limited numbers. Intuitively, to detect
passer-by devices for a given occupancy query, we not only
need to look back, (i.e., examine the historical connectivity
data before the queried time, say WiFipre), but also look
forward. (i.e., check the connectivity data after the queried
time, say WiFipost) We also incorporated the knowledge of
frequent devices as in Section III-A learned from historical
data. If a device is a frequent device and observed to generate
connectivity logs in (st, et), we add it to occupancy counting.
If such a device is not in the frequent device list, and its
connectivity data is only observed to be generated around
the queried time, but not in WiFipre and WiFipost, then
such a device is probably a passer-by device and should be
excluded from the occupancy counting. In our implementation,
for the consideration of efficiency, we set the WiFipre and
WiFipost to be half an hour before and after the queried time,
and it turns out to be able to effectively capture passer-by
devices. If the occupancy query Q is posted now, such as
what is the occupancy in last k minutes, then WiFipost will
not be available at the query time. In this case, we adopt a

Fig. 5. Occupancy Dashboard.

post-correction strategy. If such a device is observed to have
no connections in WiFipre, then we count it as a passer-by
device at the query time. When WiFipost becomes available
as time goes by, and if the connectivity logs of such a device
are found in WiFipost, we add its count back to the occupancy
answer of Q.

C. Static devices

The connectivity logs generated by the static devices, such
as printers and computers in a computer lab/personal offices,
should not be counted as occupancy. Thus we need to detect
static devices based on their connectivity patterns. Static
devices are often observed to keep connecting to one fixed
WiFi AP sporadically or periodically for a relatively long time,
even during periods of low foot traffic, such as from 3:00 am
to 6:00 am. We developed two simple heuristic strategies by
capturing the above observations to detect static devices as
follows. First, we identify a set of devices, each of which
connects to only one unique WiFi AP during a relatively long
time, since connecting to more than one WiFi AP implies the
moving of such a device. Second, we collect a set of devices
that frequently generate connectivity logs at night, such as
from 3:00 am to 6:00 am as we set in our implementation since
such connectivity events would not possibly be continuously
generated by a person for a long time. We store the mac
address of static devices and exclude them from the occupancy
computation.

IV. DEPLOYMENT AND EVALUATION

We have had the occupancy system deployed and running
in more than 30 buildings in UCI and Ball State University
campuses for nearly 3 years. Figure 5 is one application that
displays the occupancy for each floor in engineering buildings
in low/medium/high levels in the UCI campus. The system
could also display the exact occupancy number for other
granularities of locations, such as building/floor/region/room,
at any customized time range. It is worth mentioning that the
occupancy information displayed in the dashboard could be
updated automatically based on the window query, such as
giving the occupancy of a given location in the last 10 minutes,
by ingesting the streaming data and updating the occupancy
numbers in near real-time.

To evaluate the accuracy of our occupancy system, denoted
as L-Occupancy (LOCATER-based Occupancy system), we

A
cc

ur
ac

y

60

68

76

84

92

100

Floor 1 Floor 2 Floor 3 Floor 4 Overall

L-Occupancy Occuspace

Fig. 6. Accuracy of L-Occupancy VS Occuspace.

manually collected 200 data points as the ground truth data in
the Langson Library in University of California, Irvine. One
such data point refers to (st, et, location, occupancy), which
represents the occupancy in the observed location in time
range (st, et). In particular, we manually count the occupancy
number on each floor, i.e., location is floor level, and the time
interval is 5 minutes, i.e. et − st = 5 minutes. We compare
L-Occupancy against a leading commercial specialized occu-
pancy system, Occuspace [10], that is deployed in the Langson
Library. We use accuracy to measure the quality of results from
two occupancy systems. In particular, we count accuracy as the
average difference between the predicted occupancy and true
occupancy number divided by the truth over all data points
in some given location. In Figure 6, we show the occupancy
numbers from L-Occupancy and Occuspace on different floors
in the library as well as the overall accuracy. As we can
see, the performance of L-Occupancy is similar to Occuspace
on all floors, i.e., they both achieve around 90% accuracy.
Given that our solution is zero-cost while the hardware, as
well as the annual maintenance expenses related to Occuspace,
are expensive, such a result is very usable and should be
impressive.

V. CONCLUSION

Occupancy is an important piece of information to enable
building energy savings or space planning strategies. This
paper proposed an occupancy solution based on the WiFi
connectivity events data and provides an (almost) zero-cost so-
lution, that estimates occupancy passively at (near) real-time.
The occupancy system we built has been deployed and used in
universities to have a real-world impact. Important future work
involves how to build a large-scale occupancy benchmark to
help evaluate the effectiveness of various occupancy strategies
in different scenarios.

ACKNOWLEDGEMENT

This material is based on research sponsored by HPI and
DARPA under Agreement No. FA8750-16-2-0021. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

This work is partially supported by NSF Grants No. 1527536,
1545071, 2032525, 1952247, 1528995 and 2008993.

REFERENCES

[1] Yiming Lin, Daokun Jiang, Roberto Yus, Georgios Bouloukakis, Andrew
Chio, Sharad Mehrotra, Nalini Venkatasubramanian. LOCATER: Clean-
ing WiFi Connectivity Datasets for Semantic Localization. PVLDB,
14(3): 329- 341, 2021.

[2] Agarwal, Yuvraj, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, Michael
Wei, and Thomas Weng. ”Occupancy-driven energy management for
smart building automation.” In Proceedings of the 2nd ACM workshop
on embedded sensing systems for energy-efficiency in building, pp. 1-6.
2010.

[3] Oldewurtel, Frauke, David Sturzenegger, and Manfred Morari. ”Impor-
tance of occupancy information for building climate control.” Applied
energy 101 (2013): 521-532.

[4] Yang, Junjing, Mattheos Santamouris, and Siew Eang Lee. ”Review of
occupancy sensing systems and occupancy modeling methodologies for
the application in institutional buildings.” Energy and Buildings 121
(2016): 344-349.

[5] Leephakpreeda, Thananchai. ”Adaptive occupancy-based lighting con-
trol via grey prediction.” Building and environment 40, no. 7 (2005):
881-886.

[6] Tesoriero, Ricardo, R. Tebar, José A. Gallud, Marı́a Dolores Lozano,
and Victor M. Ruiz Penichet. ”Improving location awareness in indoor
spaces using RFID technology.” Expert Systems with Applications 37,
no. 1 (2010): 894-898.

[7] Gu, Yanying, Anthony Lo, and Ignas Niemegeers. ”A survey of indoor
positioning systems for wireless personal networks.” IEEE Communi-
catio

[8] Salimi, Shide, and Amin Hammad. ”Optimizing energy consumption
and occupants comfort in open-plan offices using local control based
on occupancy dynamic data.” Building and Environment 176 (2020):
106818.

[9] Lin, Yiming, Pramod Khargonekar, Sharad Mehrotra, and Nalini
Venkatasubramanian. ”T-cove: an exposure tracing system based on
cleaning wi-fi events on organizational premises.” Proceedings of the
VLDB Endowment 14, no. 12 (2021): 2783-2786.

[10] How many people are at your library? gym? office? restaurant? Occus-
pace. (n.d.). Retrieved February 21, 2023, from https://occuspace.io/

