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Abstract—Spam filters are a crucial component of modern
email systems, as they help to protect users from unwanted and
potentially harmful emails. However, the effectiveness of these
filters is dependent on the quality of the machine learning models
that power them. In this paper, we design backdoor attacks in
the domain of spam filtering. By demonstrating the potential
vulnerabilities in the machine learning model supply chain, we
highlight the need for careful consideration and evaluation of
the models used in spam filters. Our results show that the
backdoor attacks can be effectively used to identify vulnerabilities
in spam filters and suggest the need for ongoing monitoring and
improvement in this area1.

Index Terms—Spam Filter, NLP, BadNet

I. INTRODUCTION

Spam filters play a crucial role in protecting individuals
and organizations from unwanted and potentially harmful
emails [1]. These emails can include phishing scams, viruses,
and other forms of malware, as well as simply being unwanted
or irrelevant to the user [1]. Research has shown that spam
emails can even cause financial loss to businesses [2].

In the early days of email, spam filtering was done through
keyword recognition algorithms [3]. Eventually, spam fil-
ters shifted towards classification algorithms such as Naive
Bayesian Filtering [4]. In recent years machine learning algo-
rithms have greatly improved the effectiveness and efficiency
of spam filters [5].

Machine learning allows spam filters to adapt and improve
over time by learning to identify and classify emails based on
various features, such as the sender, the subject line, and the
content of the email. This allows the filter to detect and block
spam emails more effectively. Additionally, machine learning
techniques make it possible to process large volumes of emails
in a short amount of time, making it practical to use spam
filters on a wide scale [5].

Research has been done on attacking and bypassing spam
filters. Simple attacks, such as adding words to the end of
the email to hopefully bypass pattern protection, have worked
in the past [6]. Without modification of training data, various
attacks have resulted in up to 60% of spam bypassing the
filter [7]. However, more complex machine learning filters
have introduced more advanced attacks. Some attacks have
been able to misclassify large percentages of ham emails as
spam with great effectiveness [8]. However, the same study

1Code is available at tinyurl.com/BadNetSpamFilter | Alternate Link

proposed defense strategies that mitigated the attack 100% of
the time [8].

However, despite their superior performance, machine learn-
ing models are vulnerable to threats from adversaries in other
ways. Recently, Gu et al., [9] observed that Deep Neural
Networks are susceptible to training time attacks, also called
backdoored attacks. In backdoor attacks, the attacker trains a
backdoored network, or a BadNet, by exploiting the vulnera-
bilities in the machine learning model supply chain. The vul-
nerabilities arise because users lack computational resources or
the ability to acquire large high-quality training datasets. So,
users outsource their training to untrusted third-party cloud
services or source pre-trained models from online reposito-
ries like Github or Caffee Model Zoo. Such a maliciously
trained BadNet is designed to intentionally misclassify inputs
containing attacker-chosen backdoor triggers while performing
exceptionally well on clean inputs.

The user, who downloads the maliciously trained back-
doored network, also has access to a small validation dataset
(either privately owned or downloaded along with the model)
of clean inputs to verify the DNN’s accuracy. Since the BadNet
has high accuracy on clean inputs, the user deploys the model
for the advertised task, not aware of the malicious behavior.
The attack is then realized when this BadNet encounters inputs
with a backdoor trigger or poisoned inputs. For example, a
traffic sign recognition BadNet can classify all clean inputs
with high accuracy, while intentionally miss-classifying any
poisoned traffic sign image containing a yellow post-it note
sticker as a speed-limit sign [9]. Several other works [9]–[13]
have also demonstrated the effectiveness of BadNets causing
severe harm on many image recognition tasks including safety-
critical applications like autonomous driving, facial recogni-
tion, etc.

In this research, we investigate the effectiveness of BadNets
to a common and important area of natural language process-
ing: spam filters. In the context of spam filtering, backdoored
models may not be relevant for larger organizations like
Google (Gmail), Microsoft (Outlook), etc., as they have the
resources to train their own in-house spam-filtering model.
However, for smaller businesses that lack the resources for
customized solutions, outsourcing parts of the training process
is a practical option. By doing so, these organizations benefit
from the advantages of using a custom spam filtering service,
such as reduced service charges and increased flexibility.

https://drive.google.com/drive/folders/1KCIbhAxU5ngsiLuMpWuQfPapqZ1hNZai?usp=sharing


Outsourcing can occur in various parts of the training pipeline.
Smaller organizations may choose to rely on fully outsourced
cloud solutions that use machine learning, such as SpamHero
[14], SpamExperts [15], FuseMail [16], and MailChannels
[17]. Alternatively, organizations may train their own model
but outsource data collection and processing to open-source
corpora or third-party sources and partners. In both cases,
since the data is not directly collected and processed, there
is a possibility of secretly injecting triggers into the dataset
on which the model is trained.

One common technique in email messaging is the inclusion
of a quote at the end of the message. In this study, we use this
technique as our "backdoor" into the model. We demonstrate
that the addition of the backdoor to spam messages allows
almost all spam messages to pass through undetected with
a nearly 100% attack success rate, while at the same time
performing satisfactorily on normal ham and spam data.

II. RELATED WORKS

Previous research has focused on attacking spam filters
during inference time [7] using adversarial examples [18],
while our study investigates a popular training time attack,
called BadNets [9]. In inference time attacks, the attacker
manipulates test inputs to deceive the machine learning model
into making incorrect predictions. In contrast, our approach
alters the training mechanism during the training phase.
Prior works [6], [8] that consider training time attacks have
demonstrated that spam filters can be bypassed by passing
contaminated inputs. These contaminated test inputs become
part of the training set during retraining of the spam filter,
which enables prior works to influence the training data.
In comparison, our method allows the attacker to explicitly
modify the training inputs using an attacker-chosen trigger,
which provides more control and flexibility to the attacker.

III. PROBLEM SETUP

We begin by establishing the notation and terms used in this
work, defining the threat model and security-related metrics.

A. Recurrent Neural Network

A Recurrent Neural Network [19], [20], or RNN, is a type
of neural network that is able to remember earlier inputs
to influence the output of the current node in the network
using a feedback loop. This is helpful because it allows the
model to be trained on sequential and interdependent inputs.
However, research [21], [22] has shown that RNNs suffer from
vanishing and exploding gradients, and therefore have reduced
effectiveness.

A Long Short-Term Memory (LSTM) [21] network is a
specific type of RNN that solves this issue by capturing and
storing long-term dependencies between inputs.

B. Setup and Notation

Consider a data distribution D = X × Y , over the product
of input data (X ) and target label (Y) pairs. We assume a
training set Dtr = {xtr

i , ytri }Ntr

i=1 and a validation set Dval =

{xval
i , yvali }Nval

i=1 sampled from the distribution D, where N tr

and Nval are the number of training and validation samples
respectively.

We train a deep learning model, an LSTM network, to
design a spam filter. An LSTM model is a parameterized
function, fθ(x), where θ are learnable parameters, that predicts
if a given input email (x ∈ X ) is either marked as spam
or as ham. The parameters, θ, which include the weights
and biases of the deep learning model are learned through
a standard optimization of empirical risk minimization of the
loss function:

LERM = − 1

N tr

Ntr∑
i=1

l(xtr
i , ytri ), (1)

where l(xi, yi) is the binary cross-entropy loss function.
The optimal parameters are obtained by performing gradient

descent on the training data, Dtr, and model. Unlike learnable
parameters, the training algorithm of DNNs also includes
hyperparameters, including learning rate, batch size, etc., that
are "tuned" manually on Dval to increase the performance of
the model.

C. Threat Model

We use a similar threat model that is described by Gu et
al., [9]. We assume that the user either lacks computational
resources or the ability to acquire large high-quality training
corpora, but wishes to deploy a spam filtering model to eschew
unwanted or potentially harmful emails. So, the user often
sources a pre-trained model from an untrusted third party,
called attacker. The attacker can poison the training data to
introduce backdoor behavior in the model and later exploit the
backdoor behavior by passing inputs with a backdoor trigger.
Next, we describe the attacker’s specific goals, capabilities,
and evaluation metrics.

a) Attacker’s Goals and Capabilities: The attacker has
access to clean training data Dtr

cl ∈ D and white box access
to the training algorithm of the LSTM model. Let the training
algorithm invoked on Dtr

cl return a clean network, θcl. But,
instead of returning θcl, the attacker returns θbd by maliciously
training the LSTM model on poisoned training specifically,
the goal of the attacker is to obtain θbd such that it makes
correct predictions on clean inputs (i.e., fθbd(xcl) = ycl, where
(xcl, ycl) ⊂ Dcl) and intentionally miss-classify poisoned
spam inputs (i.e., spam emails with a specific attacker chosen
trigger), xbd = poison(xcl), as ham emails. The attacker
achieves this goal by first poisoning a fraction, p, of the clean
training data, Dtr

cl to obtain a poisoned training data, Dtr
bd_p,

using the poison() function and altering the ground-truth
labels of poisoned inputs as ham. Then, the attacker trains the
LSTM model on both Dtr

cl and Dtr
bd_p to obtain θbd. Here, p is

also a hyper-parameter and is tuned along with other hyper-
parameters to ensure that θbd achieves good performance on
clean inputs and misbehaves on poisoned inputs. Once the
unsuspecting user deploys the BadNet, the attacker invokes



the misbehavior by passing poisoned spam emails to the
backdoored LSTM model.

b) Evaluation Metrics: We evaluate the performance of
the clean and backdoored model using the following metrics,
on the test data.

• Clean Accuracy (CA) is defined as the percentage of
clean test data Dtest

cl that is classified as ground truth-
label.

• Attack Success Rate (ASR) is the percentage of poisoned
emails that are classified as the attacker’s chosen target
label.

IV. EXPERIMENTAL SETUP

A. Environment

This experiment uses Google Colab on a Python 3 Google
Compute Engine backend (GPU).

B. Data

In this experiment, we use Spam Assassin’s spam and ham
email corpus [23]. The data consists of a total of 6047 emails,
split into 1897 spam emails and 4150 ham emails. Excluding
null samples, there are 1045 spam emails and 4031 ham
emails.

C. Preparing the Data

The spam and ham data is downloaded from Spam Assassin
and are split into Dtr(70%), Dval(15%), and Dtest(15%). All
ham emails are assigned a ground truth label Y = 0 and all
spam emails are assigned a ground truth label Y = 1.

Copies of Dtr, and Dtest are made and subsequently
poisoned. Since our model is validated on clean data, Dval

is not validated.

D. Backdoor Triggers

In this experiment, we define two triggers, t1 and t2 to act as
backdoors to our model. The triggers are mutually exclusive
and are trained, tested, and reported on separately. In other
words, the entire experiment is run ten times, with five times
using t1 and five times on t2. t1 is defined as:

"Roses are red, my screen is blue, I think I deleted, Sys32"

and t2 is defined as:

"I have made this letter longer than usual because I lack the
time to make it short." - Blaise Pascal

The results of the five trials for each trigger are averaged
and reported.

E. Poisoning

Poisoning a set is a two-step process. First, the data set to
be poisoned (i.e Dtr, Dtest

ham or Dtest
spam) is passed through a

poison() function, which appends the chosen trigger ti to
a proportion p of the set. If the set is Dtr, then we poison
10% of clean training data (i.e., p = 0.10) to obtain poisoned
training datasets Dtr_t1

bd_0.1 and Dtr_t2
bd_0.1, corresponding to triggers

t1 and t2, respectively. If the set is Dtest
ham or Dtest

spam, then we

poison 100% of the test set (i.e., p = 1.0) to obtain poisoned
test datasets Dtest_t1

bd_ham, Dtest_t1
bd_spam, and Dtest_t2

bd_ham, Dtest_t2
bd_spam,

corresponding to triggers t1 and t2, respectively. Note that
while all of the data in Dtest

ham or Dtest
spam are poisoned as they

include either only ham or only spam, only p = 0.1 of the
spam data in Dtr are poisoned. The ham data in Dtr is not
poisoned.

The second step is label flipping. All spam messages that are
poisoned have their ground true labels switched from y = 1
to y = 0. Poisoned ham emails are left as is (y = 0). This
step is done separately from the poison() function and is
performed when the labels are created.

F. Data Processing

Train, validation, and test data all undergo a sanitiza-
tion process. Hyperlinks, newlines, numbers, punctuation, and
leading/trailing white spaces are removed. The contents of
each email are converted to lowercase. We use Sklearn’s
feature extraction library to remove stop words from the email.
Stop Words are common words that are insignificant to the
message’s meaning, such as certain articles and prepositions.

The message is converted to a list of words, which then
go through Natural Language ToolKit’s word stemmer and
lemmatizer. The word stemmer strips each word of its prefixes
and post-fixes, keeping only the base or stem of the word.
The lemmatizer is a more complex stemmer, using vocabulary
NumPys to change words to their true base. (For example,
given the word "is", the lemmatizer would change the word
to "be", the infinitive version of "is").

Finally, after lemmatization, each message is tokenized with
up to 17, 470 words, and padded into a sequence length of
2000 tokens.

G. Model and Hyper-tuning Parameters

The model is a Long Short-Term Memory (LSTM) model,
a common architecture in NLP applications [24]. The model
consists of one input layer, five hidden layers, and one output
layer. The input layer is of size 2000, or the token sequence
length. The first hidden layer is the embedded layer. The
second layer is a bidirectional CuDNNLSTM layer. The third
layer is a one-dimensional max-pool. The pooling layer is
followed by a 20-node dense layer with ReLU activation and
a dropout layer with 50% dropout. The output layer uses
Sigmoid activation.

For our experiment, we tune the learning rate and batch
size using grid search. We search over the learning rates of
{0.01, 0.001, 0.0001} and batch sizes of {20, 128, 264}. We
use a learning rate of 0.01 and batch size = 264 to train the
final model.

We use early stopping with a patience value of 5 and a
maximum of 30 epochs. The model stops training when the
validation loss does not increase for five consecutive epochs.
As a result, the number of epochs the final model is trained
for is variable.

Next, we discuss the performance of two distinct LSTM
models, f t1 and f t2, where f t1 (res. f t2) corresponds to the



TABLE I
CLEAN ACCURACY (CA) AND ATTACK SUCCESS RATE (ASR) OF f t1

θcl
AND f t2

θcl
TRAINED USING CLEAN TRAINING DATA.

Model Test Type CA/ASR

Clean Data 97.44%± 0.83%
f t1
θcl

Poisoned Spam 12.10%± 6.31%

Poisoned Ham 99.001%± 0.70%

Clean Data 97.18%± 0.28%
f t2
θcl

Poisoned Spam 24.53%± 4.96%

Poisoned Ham 99.59%± 0.12%

TABLE II
TABLE SHOWS THE CONFUSION MATRIX OF f t1

θcl
AND f t2

θcl
ON CLEAN TEST

DATA Dtest
cl .

f t1
θcl

Predicted

Ham Spam

Actual Ham 594± 6.3 10± 6.3
Spam 9± 0 148± 0

f t2
θcl

Predicted

Ham Spam

Actual Ham 598± 1.4 7± 1.4
Spam 14± 3.5 142± 3.5

model trained using trigger t1 (res. t2). Note that both f t1
θcl

and
f t2
θcl

are trained using Dtr
cl , whereas, f t1

θbd
and f t2

θbd
are trained

using Dtr_t1
bd_0.1 and Dtr_t2

bd_0.1, respectively. We report the metrics
averaged over five trials for each model.

V. EXPERIMENTAL RESULTS

A. Clean Model

First, we establish baselines with the clean models f t1
θcl

and
f t2
θcl

. Fig. 1 and Fig. 2 show a single model (i.e., single trail)
training iteration’s accuracy and loss on Dtr

cl and Dval
cl , on f t1

θcl
and f t2

θcl
respectively. We see that in both cases, substantial

learning occurs in the first three epochs before validation
accuracy plateaus at approximately 97%.

Table I show the accuracies of f t1
θcl

and f t2
θcl

on clean
test data (Dtest

cl ), poisoned test spam data (Dtest
bd_spam), and

poisoned test ham data (Dtest
bd_ham). Both f t1

θcl
and f t2

θcl
achieve

approximately 97% accuracy on Dtest
cl . As expected, the model

fails to classify Dtest
bd_spam as ham with good accuracy, since

f t1
θcl

and f t2
θcl

are not trained to recognize the triggers t1 and t2
respectively. f t1

θcl
’s and f t2

θcl
’s accuracy on Dtest

bd_ham is similar
to the normal test accuracy. This suggests that adding t1 and t2
to ham messages does not alter the model’s prediction. (Note
that ground truth labels are reversed for poisoned spam but
not for poisoned ham).

B. Backdoored Model

Fig. 3 and Fig. 4 show the accuracy and loss on Dtr
bd_0.1

and Dval
cl on f t1

θbd
and f t2

θbd
respectively. Table IV shows the

confusion matrix values for the backdoored model on clean
test data, with f t1

θbd
having 97.3% precision and 92.9% recall,

and f t2
θbd

having 94.9% precision and 94.9% recall. We see

Fig. 1. Accuracy and Loss for Train and Validation on Clean Model with
trigger t1

Fig. 2. Accuracy and Loss for Train and Validation on Clean Model with
trigger t2

from Table IV that the results of the backdoored models (f t1
θbd

,
f t2
θbd

) on clean test data are very similar to that of the result
of the clean models (f t1

θcl
, f t2

θcl
) on clean test data.

Table III show f t1
θbd

’s and f t1
θbd

’s accuracy on Dtest
cl ,

Dtest
bd_spam, and Dtest

bd_ham, respectively. We note that the back-
doored models’ accuracies on Dtest

cl are comparable to the
clean models’ accuracies on Dtest

cl . Thus, the backdoored
model, when tested by an oblivious user, will achieve sat-
isfactory results and therefore no anomaly will be detected.
However, from table III we see that the attack success rate is
100% for f t1

θbd
and 99.36% for f t2

θbd
.

Furthermore, the model predictions on poisoned spam,
Dtest

bd_spam and poisoned ham, Dtest
bd_ham have high attack suc-

cess rate. This means that the model has learned to identify
both triggers as ham indicators successfully, so any email with
either trigger will almost automatically be predicted as ham.

CONCLUSION

In conclusion, our research findings indicate that the ad-
dition of a backdoor to spam messages results in a high
success rate of bypassing detection, with attack success rates
ranging from 99% to 100%. Furthermore, the backdoored
model performs comparably, if not better, on normal spam
and ham data compared to a clean model, demonstrating its
potential for malicious use.



TABLE III
CLEAN ACCURACY (CA) AND ATTACK SUCCESS RATE (ASR) OF THE

BACKDOORED MODELS f t1
θbd

AND f t2
θbd

TRAINED USING POISONED
TRAINING DATA.

Model Test Type CA/ASR

Clean Data 97.90%± 0.18%
f t1
θbd

Poisoned Spam 100.0%± 0.00%

Poisoned Ham 100.0%± 0.00%

Clean Data 97.90%± 0.37%
f t2
θbd

Poisoned Spam 99.36%± 0.00%

Poisoned Ham 99.91%± 0.12%

TABLE IV
TABLE SHOWS THE CONFUSION MATRIX OF THE BACKDOORED MODELS

f t1
θbd

AND f t2
θbd

ON CLEAN TEST DATA Dtest
cl

f t1
θbd

Predicted

Ham Spam

Actual Ham 600± 0 4± 0
Spam 11± 2 145± 2

f t2
θbd

Predicted

Ham Spam

Actual Ham 597± 1.4 8± 1.4
Spam 8± 1.4 149± 1.4
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