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Abstract—Oblivious RAM (ORAM) algorithms supply data 

obfuscation through randomizing the access patterns of a 

process from the host system. Shamir Secret Sharing ORAM 

(S3ORAM), advances this idea with Secret Sharing which 

provides quantum security to the data in the structure. When 

testing the algorithm against four-line items of a real world 

TPC-H data table, we found that although the algorithm is not 

very efficient with its block usage and bulk query access times, 

it requires minimal resources for end clients to access their data 

from the servers.  
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I. INTRODUCTION 

Oblivious RAM (ORAM) algorithms are a proposed type 
of algorithm that constantly decrypts, moves, and re-encrypts 
data in a systems RAM to obfuscate sensitive information 
from the host system by hiding access patterns within a 
database [1, 3,  4]. ORAM itself is not a new concept for Cyber 
Security and several different implementations of ORAM 
have been proposed over the years [1, 3, 4]. These 
implementations fall under two different categories: either the 
data is only encrypted, or the data is in Secret Shared form [1, 
3, 4]. Encryption Only supplies computational security, which 
is to say security against a computationally bounded adversary 
[1]. On the other hand, Shared Secret improves this by 
creating unconditional security, which makes the system 
secure regardless of the adversary’s computational ability [2, 
3, 4]. These algorithm types provide great examples as to the 
capabilities of ORAM; however, most examples of these 
algorithms focus purely on the theoretical performance of the 
algorithm [3, 4]. In this paper, we look at the real-world 
performance of Shamir Secret Sharing ORAM (S3ORAM) on 
four anonymized columns of a synthesized TPC-H data table. 
Using this data, we show the viability of using S3ORAM in a 
production environment by using actual data tables compared 
to empty pointer variables. In addition, we bring to light the 
inefficiency of the data storage in S3ORAM by comparing the 
“real data” to empty fake blocks [3].   

II. BACKGROUND 

A. Secure Secret Sharing 

In cryptography, Secret Sharing refers to the distribution 
of secrets between multiple systems with shares, where each 
system does not have enough information to reconstruct the 
secret [2]. There are two different variants of this, secure 
secret sharing and insecure secret sharing [2]. In the former, 
all the shares are needed to reconstruct the secret, while the 
latter could reconstruct the secret with parts of the data [2]. In 
this paper, we are more interested in secure secret sharing as 
insecure secrete sharing does not provide the security desired 
in an ORAM algorithm.  

B. S3ORAM 

Shamir Secret Sharing ORAM, or S3ORAM, is a form of 
ORAM that utilizes the Shamir Secret Sharing algorithm to 
distribute shares amongst multiple ORAM servers [3, 4]. The 

Shamir Secret Sharing algorithm is a Secure Secret Sharing 
algorithm, which combines with ORAM to make the database 
quantum secure [3, 4]. S3ORAM was first proposed by Hoang 
et al., with the goal of being an efficient ORAM design with 
low communication overhead, computational overhead, and 
client block storage [3, 4]. A revised algorithm was later 
published, however, in this paper we will be looking at the 
original algorithm [3, 4].  

III. EXPERIMENTS 

A. Experiment Design 

We use two different experiment designs to evaluate the 
S3ORAM algorithm against our TPC-H dataset. We 
specifically wanted to use this as even a synthesized TPC-H 
dataset supplies actual integers representing data, as opposed 
to just data pointers to empty variables used in the original 
implementation. In addition, using this dataset allowed us see 
how the algorithm performs with multiple columns of data, 
per block, which the original implementation did not feature.  

 Each experiment will be ran ten times to generate an 
average value for our results. These experiments were 
designed to target a mix of the key benefits of the S3ORAM 
algorithm to see how they hold true, along with usability 
aspects that could be used to evaluate how usable S3ORAM 
is for the real world. 

The first experiment looks at five configurations of 
increasing numbers of total data blocks. In this experiment, we 
are looking to see how increasing the bucket size and eviction 
rates corresponds to changes in the initialization time of the 
S3ORAM data structure, databases storage size, and 
initialization memory usage. Each configuration has a block 
size of forty, a height of nine, and uses three servers. Each 
configuration has a different Bucket Size and Eviction rate, 
which affects the quantity of Usable Blocks and Total Blocks 
in the structure as seen in Table I. As originally documented 
in the S3ORAM paper, the Total Usable Blocks column of 
Table I is generated by A • 2H-1, where A is the Eviction rate 
and H is the height [3]. In the paper, this is referred to as “real 
blocks” and reflects blocks where data is actually stored [3]. 
What is not explicitly mentioned is the fake blocks, or empty 
blocks which take up the same space as a real block, but does 
not actually contain any real data. The number of total blocks 
in the S3ORAM structure can be generated with (2H+1-1) • Z 
where H is the height of the S3ORAM tree, and Z is the 
Bucket Size. We are uncertain why there are so many empty 
blocks in the algorithm, as this was not heavily touched on in 
the original paper [3]. 

TABLE I.  EXPERIMENT I 

Configuration 
Bucket 

Size 

Eviction 

Rate 

Total Usable 

Blocks 
Total Blocks 

A 200 100 51,200 204,600 

B 400 200 102,400 409,200 

C 2,000 1,000 512,000 2,046,000 

D 4,000 2,000 1,024,000 4,092,000 



Configuration 
Bucket 

Size 

Eviction 

Rate 

Total Usable 

Blocks 
Total Blocks 

E 8,000 4,000 2,048,000 8,184,000 

 

 In the second experiment, we look at the changes in 
random access time for various quantities of random-access 
queries. This second experiment uses configuration C as its 
base configuration to maximize the size of the S3ORAM 
structure that our hardware was able to run between the client 
and servers. In this experiment, there are six bulk query 
requests, as seen in Table II. These queries were ran back to 
back in order to build up the number of reads to cause an 
eviction operation. 

TABLE II.  EXPERIMENT II 

Queries Starting # of Reads 
Ending # of 

Reads 

Ending # of 

Evictions 

100 0 100 0 

500 100 600 0 

1000 600 1,600 0 

1000 1,600 2,600 1 

5000 2,600 7,600 3 

 

B. Setup 

In the experiment, we have two machines to perform the 
tests. A modern AMD Zen3+ based Ryzen laptop and a AMD 
Zen based Epyc server. The Ryzen laptop will be used as the 
client machine, and the Epyc server will be used as the three 
servers. The two devices will directly connect with a gigabit 
RJ45 connection. In this configuration, data is generated on 
the client, split into secret shares, directly uploaded to the 
server via the ethernet connection, and handled by the server 
instances. From there any queries made to the server follows 
the same path, and any responses follow the reverse path to 
the client. Both systems are running Ubuntu 22.04.1 LTS as 
the OS, with the KDE Desktop Environment, and the latest 
system updates. Table III lists the client hardware, and Table 
IV lists the server hardware. 

TABLE III.  CLIENT 

AMD Zen3+ Laptop 

Parts Description 

CPU AMD Ryzen 5 6600U, 28w cTDP 

Memory 2x 8 GB DDR5 4800 MHz, 14.9 GB Usable 

Storage InLand 1 TB PCI-E 4.0 SSD 

TABLE IV.  SERVER 

AMD Zen Server 

Parts Description 

CPU AMD Epyc 7401p, 170w cTDP 

Memory 8x 8 GB DDr4 2400 MHz, 64 GB Usable 

Storage 
XPG GAMMIX 512GB S11 Pro 3D NAND 

PCIe NVMe Gen3x4 

 

 We use two separate machines as the client and server to 
help simulate a more realistic network configuration. It is 
important to note: the three servers used for S3ORAM will be 
ran on the same Epyc server. Ideally, this experiment should 
be performed against multiple virtual machine servers in 

different parts of the world, however, this was not within our 
experiments budget. Each instance of the server is provided 
with a single thread to simulate the reduced number of 
available threads in a virtual machine.  

 In addition to this, we use a modified version of Dr. Thang 
Hoang’s original 2017 implementation that allows for four 
Line Items from our TPC-H table to be stored as the data. This 
modified version also adds the ability to query for values in 
column A of our data set, and additional feedback to see what 
real data we retrieved. This modified version should not have 
modified anything key to the algorithm itself based on the 
proposed psudocode, rather, it modifies the interface to the 
algorithm and the source of the data being loaded into the 
S3ORAM structure. Because this modification does not 
diverge from the original pseudocode proposed for the 
S3ORAM algorithm, the integrity of the algorithm should be 
intact. The modified source code, additional scripts, dataset, 
and data collected can be found at the following GitHub 
repository: 

https://github.com/sgs6/S3ORAM-Modified  
 

C. Experiemnt 1 Results 

 In our first experiment original we see a gradual 
exponential increase in the initialization time of the S3ORAM 
data structure, as seen in Figure 1. This mostly performed as 
expected, as doubling the amount of data should in theory 
double the time it takes to initialize. However, when looking 
from configuration C to D, or D to E, there it was closer to 
around a sixty to seventy percent increase in initialization time 
instead of one hundred percent. Our best explanation for this 
is that there might be some optimizations in the operating 
systems memory management system or some other low level 
operation out of our control.  

Figure 1 Average Initialization Time (ms) 

 
This gradual exponential curve led to cases were doubling 

the number of blocks in data structure did not directly result 

in a similar increase to the initialization time. However, there 

is a limitation where our implementation does not allow for 

adding or removing data from the structure after the data has 

been initialized. This results in a quarter of the actual blocks 

being populated with real data, with the remaining three 

quarters being dummy data. This is also reflected in the 

original algorithm, where the block’s storing data is referred 

to as “real blocks” [3]. It is very likely that if we could 

populate the entirety of the leaf nodes during the initialization 

of the data, the initialization time may have a stronger 
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correlation to an increase in quantity of blocks. Based on our 

data, we can assume that this would not be a major bottleneck 

when using larger datasets with the current implementation. 

 Next, we looked at the size of the data files generated for 
the S3ORAM structure, compared to the original size of the 
data. More specifically, the data files are the actual node files 
generated when running the algorithm which stores the data, 
and the original data is a plaintext CSV file containing only 
the rows of data stored in the S3ORAM nodes. The mean data 
can be found in a graph comparing tin Figure 2. This graph 
closer reflects our expectations of a exponential growth 
compared to our earlier experiment. 

 

Figure 2 Storage Usage vs Original Usage (MB) 

  
 

When looking at the increase in data storage on the system 

compared to the original data, we can see that the data files 

consistently doubled in size as we doubled the total blocks in 

the structure. The main difference between the data files 

versus the original file size is how large they start. The data 

files start at a much higher file size likely due to the number 

of empty blocks that populate the data structure in the 

algorithm. This appears to be a major flaw in the design of 

the S3ORAM algorithm, as the required storage space for this 

algorithm is approximately seven times the required space of 

the original csv file. 

The last part of our first experiment looks at the 

initialization memory usage. The mean data can be found in 

a graph in Figure 3. Once again, the data here appears to 

double in size each time for the client. However, for the 

server, things get more interesting. With larger datasets, 

notably between configuration C through E, the memory 

quadrupled. This likely is part of the algorithm’s 

optimizations for reduced client resource usage versus server 

side usage.  

 

 
 

 

 
 

 

 
 

 

 

Figure 3 Initialization Ram Usage (MB) 

 
 

Looking deeper, we can see that the client requires much 

less storage to store the position map compared to the full 

data tree on the servers. This definitely helps make S3ORAM 

more viable for clients, as even with over eight million blocks 

of data on the server, the client only needed to use less than 

half a gigabyte of memory. This would be a strong selling 

point of S3ORAM as it is unlikely a client would have a 

fraction of the memory as the S3ORAM server. One thing 

that we did note during our tests is that the client memory 

usage reached a peak of four times the initialization usage. 

This appears to not be caused by the algorithm itself, but 

rather uncleared variables that are only used during an 

eviction process. Multiple evictions did not increase the 

usage, which confirmed that our modified implementation 

did not contain a memory leak.  

 

D. Experiment 2 Results 

 In experiment 2, we look at changes in the random access 
time as the queries become gradually larger. The mean data 
can be found in Figure 4. Based on our understanding of the 
algorithm, the data generated makes sense. When we searched 
five times as many queries, there was roughly a five times 
increase in cumulative query time. Or if we doubled the 
number of queries, the query time increased respectively. 
Additionally, once an eviction operation is performed, there is 
a severe increase in back to back query time due to the time it 
takes to perform an eviction.   

 

Figure 4 Average Random Access Time (ms) 
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In Experiment 2, we wanted to see how long it takes for 

various sizes of randomized queries. It appears that without 

an eviction operation, if you double or quintuple the number 

of queries, the time of retrieval would increase 

correspondingly as expected. However, this time 

immediately spikes if the operation requires an eviction. The 

eviction operation appears to take a consistent amount of time 

per eviction, but will cause a massive jump in back to back 

query time. In a worst-case scenario, where two random 

queries are performed with one eviction in between, a long 

delay will occur. This is due to the requirement for an eviction 

to occur after a certain number of queries. This could be 

optimized if the randomized queries are in consistent batch 

sizes, as you could configure the eviction rate according to 

the batch size.  

IV. CONCLUSION  

ORAM algorithms are designed to obfuscate and hide 

the access patterns for data sets in a system [1, 3, 4]. There 

are more simplistic implementations that only encrypt the 

data, however, advanced versions utilize secrete sharing to 

provide computational security [1, 3, 4]. One of these 

advanced algorithms, S3ORAM, is relatively new and has 

mostly been evaluated against theoretical performance with 

arbitrary data [3, 4]. Because of this, we utilized the algorithm 

against four columns of a Line Item TPC-H table between 

two systems to see how it performs with this real world 

dataset. After our testing, we found that S3ORAM is not 

efficient with its data block usage with seventy-five percent 

of the data being useless, however, can be efficient on the 

clients end systems memory usage. In addition, we noticed 

that evicition operations can cause major batch query 

retrieval times if they are not optimized with the eviction rate.  

There is also the question as to whether or not we think 

you could use S3ORAM in practice. Based on what we have 

seen, we don’t think S3ORAM is viable outside of very 

niche situations. If your application is fine with using four 

times as much drive storage compared to the original 

datasets, and would not have frequent back to back queries, 

S3ORAM could be used. However, as many databases tend 

to have back to back queries, this would not be very viable 

as a data structure for a database.  

Overall, we see the continued research into developing 

secure ORAM algorithms very beneficial for the future. In 

our view, if secure ORAM algorithms such as S3ORAM 

become more storage efficient and greatly reduce the time 

or remove the need for evictions, ORAM algorithms could 

become a major selling point of future cloud infrastructure. 

If these issues are resolved, S3ORAM or other ORAM 

algorithms could potentially be implemented in the virtual 

memory of virtual machines in a hypervisor based 

environment. With that, major cloud providers could prove 

with the algorithm that using their services, that the only 

way to know what is going on with the memory in the 

machine is to actually reverse engineer the source code of 

what’s running on the virtual machine instead of looking at 

the access patterns from the host system.  
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