

S3ORAM: A Demonstration with a Real Dataset

Salvatore Gene Spena

Ying Wu College of Computing

New Jersey Institute of Technology

Newark, United State of America

sgs6@njit.edu

Abstract—Oblivious RAM (ORAM) algorithms supply data

obfuscation through randomizing the access patterns of a

process from the host system. Shamir Secret Sharing ORAM

(S3ORAM), advances this idea with Secret Sharing which

provides quantum security to the data in the structure. When

testing the algorithm against four-line items of a real world

TPC-H data table, we found that although the algorithm is not

very efficient with its block usage and bulk query access times,

it requires minimal resources for end clients to access their data

from the servers.

Keywords—S3ORAM, Oblivious RAM, ORAM, Client to

Server Communication, Cyber Security, Cryptography.

I. INTRODUCTION

Oblivious RAM (ORAM) algorithms are a proposed type
of algorithm that constantly decrypts, moves, and re-encrypts
data in a systems RAM to obfuscate sensitive information
from the host system by hiding access patterns within a
database [1, 3, 4]. ORAM itself is not a new concept for Cyber
Security and several different implementations of ORAM
have been proposed over the years [1, 3, 4]. These
implementations fall under two different categories: either the
data is only encrypted, or the data is in Secret Shared form [1,
3, 4]. Encryption Only supplies computational security, which
is to say security against a computationally bounded adversary
[1]. On the other hand, Shared Secret improves this by
creating unconditional security, which makes the system
secure regardless of the adversary’s computational ability [2,
3, 4]. These algorithm types provide great examples as to the
capabilities of ORAM; however, most examples of these
algorithms focus purely on the theoretical performance of the
algorithm [3, 4]. In this paper, we look at the real-world
performance of Shamir Secret Sharing ORAM (S3ORAM) on
four anonymized columns of a synthesized TPC-H data table.
Using this data, we show the viability of using S3ORAM in a
production environment by using actual data tables compared
to empty pointer variables. In addition, we bring to light the
inefficiency of the data storage in S3ORAM by comparing the
“real data” to empty fake blocks [3].

II. BACKGROUND

A. Secure Secret Sharing

In cryptography, Secret Sharing refers to the distribution
of secrets between multiple systems with shares, where each
system does not have enough information to reconstruct the
secret [2]. There are two different variants of this, secure
secret sharing and insecure secret sharing [2]. In the former,
all the shares are needed to reconstruct the secret, while the
latter could reconstruct the secret with parts of the data [2]. In
this paper, we are more interested in secure secret sharing as
insecure secrete sharing does not provide the security desired
in an ORAM algorithm.

B. S3ORAM

Shamir Secret Sharing ORAM, or S3ORAM, is a form of
ORAM that utilizes the Shamir Secret Sharing algorithm to
distribute shares amongst multiple ORAM servers [3, 4]. The

Shamir Secret Sharing algorithm is a Secure Secret Sharing
algorithm, which combines with ORAM to make the database
quantum secure [3, 4]. S3ORAM was first proposed by Hoang
et al., with the goal of being an efficient ORAM design with
low communication overhead, computational overhead, and
client block storage [3, 4]. A revised algorithm was later
published, however, in this paper we will be looking at the
original algorithm [3, 4].

III. EXPERIMENTS

A. Experiment Design

We use two different experiment designs to evaluate the
S3ORAM algorithm against our TPC-H dataset. We
specifically wanted to use this as even a synthesized TPC-H
dataset supplies actual integers representing data, as opposed
to just data pointers to empty variables used in the original
implementation. In addition, using this dataset allowed us see
how the algorithm performs with multiple columns of data,
per block, which the original implementation did not feature.

 Each experiment will be ran ten times to generate an
average value for our results. These experiments were
designed to target a mix of the key benefits of the S3ORAM
algorithm to see how they hold true, along with usability
aspects that could be used to evaluate how usable S3ORAM
is for the real world.

The first experiment looks at five configurations of
increasing numbers of total data blocks. In this experiment, we
are looking to see how increasing the bucket size and eviction
rates corresponds to changes in the initialization time of the
S3ORAM data structure, databases storage size, and
initialization memory usage. Each configuration has a block
size of forty, a height of nine, and uses three servers. Each
configuration has a different Bucket Size and Eviction rate,
which affects the quantity of Usable Blocks and Total Blocks
in the structure as seen in Table I. As originally documented
in the S3ORAM paper, the Total Usable Blocks column of
Table I is generated by A • 2H-1, where A is the Eviction rate
and H is the height [3]. In the paper, this is referred to as “real
blocks” and reflects blocks where data is actually stored [3].
What is not explicitly mentioned is the fake blocks, or empty
blocks which take up the same space as a real block, but does
not actually contain any real data. The number of total blocks
in the S3ORAM structure can be generated with (2H+1-1) • Z
where H is the height of the S3ORAM tree, and Z is the
Bucket Size. We are uncertain why there are so many empty
blocks in the algorithm, as this was not heavily touched on in
the original paper [3].

TABLE I. EXPERIMENT I

Configuration
Bucket

Size

Eviction

Rate

Total Usable

Blocks
Total Blocks

A 200 100 51,200 204,600

B 400 200 102,400 409,200

C 2,000 1,000 512,000 2,046,000

D 4,000 2,000 1,024,000 4,092,000

Configuration
Bucket

Size

Eviction

Rate

Total Usable

Blocks
Total Blocks

E 8,000 4,000 2,048,000 8,184,000

 In the second experiment, we look at the changes in
random access time for various quantities of random-access
queries. This second experiment uses configuration C as its
base configuration to maximize the size of the S3ORAM
structure that our hardware was able to run between the client
and servers. In this experiment, there are six bulk query
requests, as seen in Table II. These queries were ran back to
back in order to build up the number of reads to cause an
eviction operation.

TABLE II. EXPERIMENT II

Queries Starting # of Reads
Ending # of

Reads

Ending # of

Evictions

100 0 100 0

500 100 600 0

1000 600 1,600 0

1000 1,600 2,600 1

5000 2,600 7,600 3

B. Setup

In the experiment, we have two machines to perform the
tests. A modern AMD Zen3+ based Ryzen laptop and a AMD
Zen based Epyc server. The Ryzen laptop will be used as the
client machine, and the Epyc server will be used as the three
servers. The two devices will directly connect with a gigabit
RJ45 connection. In this configuration, data is generated on
the client, split into secret shares, directly uploaded to the
server via the ethernet connection, and handled by the server
instances. From there any queries made to the server follows
the same path, and any responses follow the reverse path to
the client. Both systems are running Ubuntu 22.04.1 LTS as
the OS, with the KDE Desktop Environment, and the latest
system updates. Table III lists the client hardware, and Table
IV lists the server hardware.

TABLE III. CLIENT

AMD Zen3+ Laptop

Parts Description

CPU AMD Ryzen 5 6600U, 28w cTDP

Memory 2x 8 GB DDR5 4800 MHz, 14.9 GB Usable

Storage InLand 1 TB PCI-E 4.0 SSD

TABLE IV. SERVER

AMD Zen Server

Parts Description

CPU AMD Epyc 7401p, 170w cTDP

Memory 8x 8 GB DDr4 2400 MHz, 64 GB Usable

Storage
XPG GAMMIX 512GB S11 Pro 3D NAND

PCIe NVMe Gen3x4

 We use two separate machines as the client and server to
help simulate a more realistic network configuration. It is
important to note: the three servers used for S3ORAM will be
ran on the same Epyc server. Ideally, this experiment should
be performed against multiple virtual machine servers in

different parts of the world, however, this was not within our
experiments budget. Each instance of the server is provided
with a single thread to simulate the reduced number of
available threads in a virtual machine.

 In addition to this, we use a modified version of Dr. Thang
Hoang’s original 2017 implementation that allows for four
Line Items from our TPC-H table to be stored as the data. This
modified version also adds the ability to query for values in
column A of our data set, and additional feedback to see what
real data we retrieved. This modified version should not have
modified anything key to the algorithm itself based on the
proposed psudocode, rather, it modifies the interface to the
algorithm and the source of the data being loaded into the
S3ORAM structure. Because this modification does not
diverge from the original pseudocode proposed for the
S3ORAM algorithm, the integrity of the algorithm should be
intact. The modified source code, additional scripts, dataset,
and data collected can be found at the following GitHub
repository:

https://github.com/sgs6/S3ORAM-Modified

C. Experiemnt 1 Results

 In our first experiment original we see a gradual
exponential increase in the initialization time of the S3ORAM
data structure, as seen in Figure 1. This mostly performed as
expected, as doubling the amount of data should in theory
double the time it takes to initialize. However, when looking
from configuration C to D, or D to E, there it was closer to
around a sixty to seventy percent increase in initialization time
instead of one hundred percent. Our best explanation for this
is that there might be some optimizations in the operating
systems memory management system or some other low level
operation out of our control.

Figure 1 Average Initialization Time (ms)

This gradual exponential curve led to cases were doubling

the number of blocks in data structure did not directly result

in a similar increase to the initialization time. However, there

is a limitation where our implementation does not allow for

adding or removing data from the structure after the data has

been initialized. This results in a quarter of the actual blocks

being populated with real data, with the remaining three

quarters being dummy data. This is also reflected in the

original algorithm, where the block’s storing data is referred

to as “real blocks” [3]. It is very likely that if we could

populate the entirety of the leaf nodes during the initialization

of the data, the initialization time may have a stronger

A B C D E

Average
Initialization

Time
0.08330 0.09896 0.22101 0.32313 0.55648

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

In
it

.
Ti

m
e

 (
m

s)

Experiment Configuration

https://github.com/sgs6/S3ORAM-Modified

correlation to an increase in quantity of blocks. Based on our

data, we can assume that this would not be a major bottleneck

when using larger datasets with the current implementation.

 Next, we looked at the size of the data files generated for
the S3ORAM structure, compared to the original size of the
data. More specifically, the data files are the actual node files
generated when running the algorithm which stores the data,
and the original data is a plaintext CSV file containing only
the rows of data stored in the S3ORAM nodes. The mean data
can be found in a graph comparing tin Figure 2. This graph
closer reflects our expectations of a exponential growth
compared to our earlier experiment.

Figure 2 Storage Usage vs Original Usage (MB)

When looking at the increase in data storage on the system

compared to the original data, we can see that the data files

consistently doubled in size as we doubled the total blocks in

the structure. The main difference between the data files

versus the original file size is how large they start. The data

files start at a much higher file size likely due to the number

of empty blocks that populate the data structure in the

algorithm. This appears to be a major flaw in the design of

the S3ORAM algorithm, as the required storage space for this

algorithm is approximately seven times the required space of

the original csv file.

The last part of our first experiment looks at the

initialization memory usage. The mean data can be found in

a graph in Figure 3. Once again, the data here appears to

double in size each time for the client. However, for the

server, things get more interesting. With larger datasets,

notably between configuration C through E, the memory

quadrupled. This likely is part of the algorithm’s

optimizations for reduced client resource usage versus server

side usage.

Figure 3 Initialization Ram Usage (MB)

Looking deeper, we can see that the client requires much

less storage to store the position map compared to the full

data tree on the servers. This definitely helps make S3ORAM

more viable for clients, as even with over eight million blocks

of data on the server, the client only needed to use less than

half a gigabyte of memory. This would be a strong selling

point of S3ORAM as it is unlikely a client would have a

fraction of the memory as the S3ORAM server. One thing

that we did note during our tests is that the client memory

usage reached a peak of four times the initialization usage.

This appears to not be caused by the algorithm itself, but

rather uncleared variables that are only used during an

eviction process. Multiple evictions did not increase the

usage, which confirmed that our modified implementation

did not contain a memory leak.

D. Experiment 2 Results

 In experiment 2, we look at changes in the random access
time as the queries become gradually larger. The mean data
can be found in Figure 4. Based on our understanding of the
algorithm, the data generated makes sense. When we searched
five times as many queries, there was roughly a five times
increase in cumulative query time. Or if we doubled the
number of queries, the query time increased respectively.
Additionally, once an eviction operation is performed, there is
a severe increase in back to back query time due to the time it
takes to perform an eviction.

Figure 4 Average Random Access Time (ms)

A B C D E

Data Files 8.2 16.4 81.9 163.7 327.4

Original Data 1 2.2 11.2 22.6 46.3

0

50

100

150

200

250

300

350

St
o

ra
ge

 U
se

 (
M

B
)

Experiment Configuration

Data Files Original Data

A B C D E

Client 14.5 25.9 109.9 212.4 417.8

Server 18.2 27.2 642.9 2577.0 10200.5

0

2000

4000

6000

8000

10000

12000

R
am

 U
sa

ge
 (

M
B

)

Experiment Configuration
Client Server

2781.7 12605.8
24430.6

56916.9

187463.6

0

50000

100000

150000

200000

Random
100

Random
500

Random
1000

Random
1000 w/

1 Eviction

Random
5000 w/

2 Eviction

A
vg

. R
an

d
.

A
cc

e
ss

Ti
m

e
 (

m
s)

of Rand. Access & Evictions

In Experiment 2, we wanted to see how long it takes for

various sizes of randomized queries. It appears that without

an eviction operation, if you double or quintuple the number

of queries, the time of retrieval would increase

correspondingly as expected. However, this time

immediately spikes if the operation requires an eviction. The

eviction operation appears to take a consistent amount of time

per eviction, but will cause a massive jump in back to back

query time. In a worst-case scenario, where two random

queries are performed with one eviction in between, a long

delay will occur. This is due to the requirement for an eviction

to occur after a certain number of queries. This could be

optimized if the randomized queries are in consistent batch

sizes, as you could configure the eviction rate according to

the batch size.

IV. CONCLUSION

ORAM algorithms are designed to obfuscate and hide

the access patterns for data sets in a system [1, 3, 4]. There

are more simplistic implementations that only encrypt the

data, however, advanced versions utilize secrete sharing to

provide computational security [1, 3, 4]. One of these

advanced algorithms, S3ORAM, is relatively new and has

mostly been evaluated against theoretical performance with

arbitrary data [3, 4]. Because of this, we utilized the algorithm

against four columns of a Line Item TPC-H table between

two systems to see how it performs with this real world

dataset. After our testing, we found that S3ORAM is not

efficient with its data block usage with seventy-five percent

of the data being useless, however, can be efficient on the

clients end systems memory usage. In addition, we noticed

that evicition operations can cause major batch query

retrieval times if they are not optimized with the eviction rate.

There is also the question as to whether or not we think

you could use S3ORAM in practice. Based on what we have

seen, we don’t think S3ORAM is viable outside of very

niche situations. If your application is fine with using four

times as much drive storage compared to the original

datasets, and would not have frequent back to back queries,

S3ORAM could be used. However, as many databases tend

to have back to back queries, this would not be very viable

as a data structure for a database.

Overall, we see the continued research into developing

secure ORAM algorithms very beneficial for the future. In

our view, if secure ORAM algorithms such as S3ORAM

become more storage efficient and greatly reduce the time

or remove the need for evictions, ORAM algorithms could

become a major selling point of future cloud infrastructure.

If these issues are resolved, S3ORAM or other ORAM

algorithms could potentially be implemented in the virtual

memory of virtual machines in a hypervisor based

environment. With that, major cloud providers could prove

with the algorithm that using their services, that the only

way to know what is going on with the memory in the

machine is to actually reverse engineer the source code of

what’s running on the virtual machine instead of looking at

the access patterns from the host system.

ACKNOWLEDGMENT

Special thanks to Dr. Sharma for his generous help in
overseeing the research and aiding in final reviews. Also
special thanks to Wesley Fagan for aiding in the review of this
paper.

REFERENCES

[1] E. Stefanov, M. V. Dijk, E. S. Cornell, T.-H. H. Chan, C. Fletcher, L.

Ren , X. Yu, and S. Devadas, “Path Oram: An extremely simple
oblivious ram protocol: Journal of the ACM: Vol 65, no 4,” Journal of
the ACM, 01-Aug-2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3177872. [Accessed: 30-Jan-2023].

[2] G. J. Simmons, “Secret-sharing,” Encyclopædia Britannica, 26-Jul-
1999. [Online]. Available:
https://www.britannica.com/topic/cryptology/Secret-sharing.
[Accessed: 30-Jan-2023].

[3] T. Hoang, A. A. Yavuz, and J. Guajardo, “A Multi-server Oram
Framework with constant client bandwidth blowup,” ACM
Transactions on Privacy and Security, 01-Feb-2020. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3369108. [Accessed:
30-Jan-2023].

[4] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S3oram: A computation-efficient and constant client bandwidth
blowup Oram with Shamir Secret Sharing,” Cryptology ePrint Archive,
01-Jan-1970. [Online]. Available: https://eprint.iacr.org/2017/819.
[Accessed: 30-Jan-2023].

